AllKNN#
- class imblearn.under_sampling.AllKNN(*, sampling_strategy='auto', n_neighbors=3, kind_sel='all', allow_minority=False, n_jobs=None)[source]#
Undersample based on the AllKNN method.
This method will apply
EditedNearestNeighbours
several times varying the number of nearest neighbours at each round. It begins by examining 1 closest neighbour, and it incrases the neighbourhood by 1 at each round.The algorithm stops when the maximum number of neighbours are examined or when the majority class becomes the minority class, whichever comes first.
Read more in the User Guide.
- Parameters:
- sampling_strategystr, list or callable
Sampling information to sample the data set.
When
str
, specify the class targeted by the resampling. Note the the number of samples will not be equal in each. Possible choices are:'majority'
: resample only the majority class;'not minority'
: resample all classes but the minority class;'not majority'
: resample all classes but the majority class;'all'
: resample all classes;'auto'
: equivalent to'not minority'
.When
list
, the list contains the classes targeted by the resampling.When callable, function taking
y
and returns adict
. The keys correspond to the targeted classes. The values correspond to the desired number of samples for each class.
- n_neighborsint or estimator object, default=3
If
int
, size of the maximum neighbourhood to examine for the undersampling. Ifn_neighbors=3
, in the first iteration the algorithm will examine 1 closest neigbhour, in the second round 2, and in the final round 3. If object, an estimator that inherits fromKNeighborsMixin
that will be used to find the nearest-neighbors. Note that if you want to examine the 3 closest neighbours of a sample, you need to pass a 4-KNN.- kind_sel{‘all’, ‘mode’}, default=’all’
Strategy to use to exclude samples.
If
'all'
, all neighbours should be of the same class of the examined sample for it not be excluded.If
'mode'
, most neighbours should be of the same class of the examined sample for it not be excluded.
The strategy
"all"
will be less conservative than'mode'
. Thus, more samples will be removed whenkind_sel="all"
, generally.- allow_minoritybool, default=False
If
True
, it allows the majority classes to become the minority class without early stopping.Added in version 0.3.
- n_jobsint, default=None
Number of CPU cores used during the cross-validation loop.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
- Attributes:
- sampling_strategy_dict
Dictionary containing the information to sample the dataset. The keys correspond to the class labels from which to sample and the values are the number of samples to sample.
- nn_estimator object
Validated K-nearest Neighbours estimator linked to the parameter
n_neighbors
.- enn_sampler object
The validated
EditedNearestNeighbours
instance.- sample_indices_ndarray of shape (n_new_samples,)
Indices of the samples selected.
Added in version 0.4.
- n_features_in_int
Number of features in the input dataset.
Added in version 0.9.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during
fit
. Defined only whenX
has feature names that are all strings.Added in version 0.10.
See also
CondensedNearestNeighbour
Under-sampling by condensing samples.
EditedNearestNeighbours
Under-sampling by editing samples.
RepeatedEditedNearestNeighbours
Under-sampling by repeating ENN.
Notes
The method is based on [1].
Supports multi-class resampling. A one-vs.-rest scheme is used when sampling a class as proposed in [1].
References
Examples
>>> from collections import Counter >>> from sklearn.datasets import make_classification >>> from imblearn.under_sampling import AllKNN >>> X, y = make_classification(n_classes=2, class_sep=2, ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) >>> print('Original dataset shape %s' % Counter(y)) Original dataset shape Counter({1: 900, 0: 100}) >>> allknn = AllKNN() >>> X_res, y_res = allknn.fit_resample(X, y) >>> print('Resampled dataset shape %s' % Counter(y_res)) Resampled dataset shape Counter({1: 887, 0: 100})
Methods
fit
(X, y, **params)Check inputs and statistics of the sampler.
fit_resample
(X, y, **params)Resample the dataset.
get_feature_names_out
([input_features])Get output feature names for transformation.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
- fit(X, y, **params)[source]#
Check inputs and statistics of the sampler.
You should use
fit_resample
in all cases.- Parameters:
- X{array-like, dataframe, sparse matrix} of shape (n_samples, n_features)
Data array.
- yarray-like of shape (n_samples,)
Target array.
- Returns:
- selfobject
Return the instance itself.
- fit_resample(X, y, **params)[source]#
Resample the dataset.
- Parameters:
- X{array-like, dataframe, sparse matrix} of shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
- yarray-like of shape (n_samples,)
Corresponding label for each sample in X.
- Returns:
- X_resampled{array-like, dataframe, sparse matrix} of shape (n_samples_new, n_features)
The array containing the resampled data.
- y_resampledarray-like of shape (n_samples_new,)
The corresponding label of
X_resampled
.
- get_feature_names_out(input_features=None)[source]#
Get output feature names for transformation.
- Parameters:
- input_featuresarray-like of str or None, default=None
Input features.
If
input_features
isNone
, thenfeature_names_in_
is used as feature names in. Iffeature_names_in_
is not defined, then the following input feature names are generated:["x0", "x1", ..., "x(n_features_in_ - 1)"]
.If
input_features
is an array-like, theninput_features
must matchfeature_names_in_
iffeature_names_in_
is defined.
- Returns:
- feature_names_outndarray of str objects
Same as input features.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
Examples using imblearn.under_sampling.AllKNN
#
Compare under-sampling samplers