balanced_batch_generator#
- imblearn.tensorflow.balanced_batch_generator(X, y, *, sample_weight=None, sampler=None, batch_size=32, keep_sparse=False, random_state=None)[source]#
- Create a balanced batch generator to train tensorflow model. - Returns a generator — as well as the number of step per epoch — to iterate to get the mini-batches. The sampler defines the sampling strategy used to balance the dataset ahead of creating the batch. The sampler should have an attribute - sample_indices_.- Added in version 0.4. - Parameters:
- Xndarray of shape (n_samples, n_features)
- Original imbalanced dataset. 
- yndarray of shape (n_samples,) or (n_samples, n_classes)
- Associated targets. 
- sample_weightndarray of shape (n_samples,), default=None
- Sample weight. 
- samplersampler object, default=None
- A sampler instance which has an attribute - sample_indices_. By default, the sampler used is a- RandomUnderSampler.
- batch_sizeint, default=32
- Number of samples per gradient update. 
- keep_sparsebool, default=False
- Either or not to conserve or not the sparsity of the input - X. By default, the returned batches will be dense.
- random_stateint, RandomState instance, default=None
- Control the randomization of the algorithm. - If int, - random_stateis the seed used by the random number generator;
- If - RandomStateinstance, random_state is the random number generator;
- If - None, the random number generator is the- RandomStateinstance used by- np.random.
 
 
- Returns:
- generatorgenerator of tuple
- Generate batch of data. The tuple generated are either (X_batch, y_batch) or (X_batch, y_batch, sampler_weight_batch). 
- steps_per_epochint
- The number of samples per epoch. 
 
 
 
    