classification_report_imbalanced#
- imblearn.metrics.classification_report_imbalanced(y_true, y_pred, *, labels=None, target_names=None, sample_weight=None, digits=2, alpha=0.1, output_dict=False, zero_division='warn')[source]#
Build a classification report based on metrics used with imbalanced dataset.
Specific metrics have been proposed to evaluate the classification performed on imbalanced dataset. This report compiles the state-of-the-art metrics: precision/recall/specificity, geometric mean, and index balanced accuracy of the geometric mean.
Read more in the User Guide.
- Parameters:
- y_true1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
- y_pred1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
- labelsarray-like of shape (n_labels,), default=None
Optional list of label indices to include in the report.
- target_nameslist of str of shape (n_labels,), default=None
Optional display names matching the labels (same order).
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- digitsint, default=2
Number of digits for formatting output floating point values. When
output_dict
isTrue
, this will be ignored and the returned values will not be rounded.- alphafloat, default=0.1
Weighting factor.
- output_dictbool, default=False
If True, return output as dict.
Added in version 0.8.
- zero_division“warn” or {0, 1}, default=”warn”
Sets the value to return when there is a zero division. If set to “warn”, this acts as 0, but warnings are also raised.
Added in version 0.8.
- Returns:
- reportstring / dict
Text summary of the precision, recall, specificity, geometric mean, and index balanced accuracy. Dictionary returned if output_dict is True. Dictionary has the following structure:
{'label 1': {'pre':0.5, 'rec':1.0, ... }, 'label 2': { ... }, ... }
Examples
>>> import numpy as np >>> from imblearn.metrics import classification_report_imbalanced >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report_imbalanced(y_true, y_pred, target_names=target_names)) pre rec spe f1 geo iba sup class 0 0.50 1.00 0.75 0.67 0.87 0.77 1 class 1 0.00 0.00 0.75 0.00 0.00 0.00 1 class 2 1.00 0.67 1.00 0.80 0.82 0.64 3 avg / total 0.70 0.60 0.90 0.61 0.66 0.54 5
Examples using imblearn.metrics.classification_report_imbalanced
#
Multiclass classification with under-sampling
Example of topic classification in text documents
Evaluate classification by compiling a report