Note
Go to the end to download the full example code.
Multiclass classification with under-sampling#
Some balancing methods allow for balancing dataset with multiples classes. We provide an example to illustrate the use of those methods which do not differ from the binary case.
Training target statistics: Counter({1: 38, 2: 38, 0: 17})
Testing target statistics: Counter({1: 12, 2: 12, 0: 8})
pre rec spe f1 geo iba sup
0 1.00 1.00 1.00 1.00 1.00 1.00 8
1 0.88 0.58 0.95 0.70 0.74 0.53 12
2 0.69 0.92 0.75 0.79 0.83 0.70 12
avg / total 0.84 0.81 0.89 0.81 0.84 0.71 32
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# License: MIT
from collections import Counter
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from imblearn.datasets import make_imbalance
from imblearn.metrics import classification_report_imbalanced
from imblearn.pipeline import make_pipeline
from imblearn.under_sampling import NearMiss
print(__doc__)
RANDOM_STATE = 42
# Create a folder to fetch the dataset
iris = load_iris()
X, y = make_imbalance(
iris.data,
iris.target,
sampling_strategy={0: 25, 1: 50, 2: 50},
random_state=RANDOM_STATE,
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=RANDOM_STATE)
print(f"Training target statistics: {Counter(y_train)}")
print(f"Testing target statistics: {Counter(y_test)}")
# Create a pipeline
pipeline = make_pipeline(NearMiss(version=2), StandardScaler(), LogisticRegression())
pipeline.fit(X_train, y_train)
# Classify and report the results
print(classification_report_imbalanced(y_test, pipeline.predict(X_test)))
Total running time of the script: (0 minutes 0.187 seconds)
Estimated memory usage: 199 MB